Direct observation of failing fibers in muscles of dystrophic mice provides mechanistic insight into muscular dystrophy.
نویسندگان
چکیده
Duchenne muscular dystrophy is caused by the absence of the protein dystrophin. Dystrophin's function is not known, but its cellular location and associations with both the force-generating contractile core and membrane-spanning entities suggest a role in mechanically coupling force from its intracellular origins to the fiber membrane and beyond. We report here the presence of destructive contractile activity in lumbrical muscles from dystrophin-deficient (mdx) mice during nominally quiescent periods following exposure to mechanical stress. The ectopic activity, which was observable microscopically, resulted in longitudinal separation and clotting of fiber myoplasm and was absent when calcium (Ca(2+)) was removed from the bathing medium. Separation and clotting of myoplasm were also produced in dystrophin-deficient muscles by local application of a Ca(2+) ionophore to create membrane breaches in the absence of mechanical stress, whereas muscles from control mice tolerated ionophore-induced entry of Ca(2+) without damage. These observations suggest a failure cascade in dystrophin-deficient fibers that 1) is initiated by a stress-induced influx of extracellular Ca(2+), causing localized activation to continue after cessation of stimulation, and 2) proceeds as the persistent local activation, combined with reduced lateral mechanical coupling between the contractile core and the extracellular matrix, results in longitudinal separation of myoplasm in nonactivated regions of the fiber. This mechanism invokes both the membrane stabilization and the mechanical coupling functions frequently proposed for dystrophin and suggests that, whereas the absence of either function alone is not sufficient to cause fiber failure, their combined absence is catastrophic.
منابع مشابه
Contractile function and low-intensity exercise effects of old dystrophic ( mdx) mice.
Old mdx mice display a severe myopathy almost identical to Duchenne's muscular dystrophy. This study examined the contractile properties of old mdxmuscles and investigated any effects of low-intensity exercise. Isometric contractile properties of the extensor digitorum longus (EDL) and soleus muscles were tested in adult (8-10 mo) and old (24 mo, split into sedentary and exercised groups) mdx m...
متن کاملIn Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice.
RATIONALE Duchenne muscular dystrophy is a severe inherited form of muscular dystrophy caused by mutations in the reading frame of the dystrophin gene disrupting its protein expression. Dystrophic cardiomyopathy is a leading cause of death in Duchenne muscular dystrophy patients, and currently no effective treatment exists to halt its progression. Recent advancement in genome editing technologi...
متن کاملPoloxamer 188 reduces the contraction-induced force decline in lumbrical muscles from mdx mice.
Duchenne Muscular Dystrophy is a genetic disease caused by the lack of the protein dystrophin. Dystrophic muscles are highly susceptible to contraction-induced injury, and following contractile activity, have disrupted plasma membranes that allow leakage of calcium ions into muscle fibers. Because of the direct relationship between increased intracellular calcium concentration and muscle dysfun...
متن کاملCaveolin-1, caveolin-3 and VEGF expression in the masticatory muscles of mdx mice.
Duchenne muscular dystrophy (DMD) and murine X-linked muscular dystrophy (mdx), its murine model, are characterized by muscle damage and muscle weakness associated with inflammation and new vessel formation. Caveolins, dystrophin-associated proteins, are involved in the pathogenesis of DMD, because increased numbers of caveolae are found in DMD and mdx hindlimb muscles. Caveolae influence angio...
متن کاملRenin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles.
Angiotensin-converting enzyme inhibitors (ACEi) and mineralocorticoid receptor (MR) antagonists are FDA-approved drugs that inhibit the renin-angiotensin-aldosterone system (RAAS) and are used to treat heart failure. Combined treatment with the ACEi lisinopril and the nonspecific MR antagonist spironolactone surprisingly improves skeletal muscle, in addition to heart function and pathology in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 294 2 شماره
صفحات -
تاریخ انتشار 2008